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Abstract. Everyone knows that the movie business is risky. But how risky is it? Do strategies exist
that reduce risk? We investigate these questions using a sample of over 2000 motion pictures. We dis-
cover that box-office revenues are asymptotically Pareto-distributed and have infinite variance. The
mean is dominated by rare blockbuster movies that are located in the far right tail. There is no typical
movie because box-office revenue outcomes do not converge to an average: revenues diverge over all
scales. The studio model of risk management lacks a foundation in theory or evidence, and revenue
forecasts have zero precision. Movies are complex products and the cascade of information among
film-goers during the course of a film’s run can evolve along so many paths that it is impossible to
attribute the success of a movie to individual causal factors. The audience makes a movie a hit and
no amount of “star power” or marketing can alter that. The real star is the movie.
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“With all due respect, nobody knows anything”. Screenwriter William Gold-
man (1983).

1. Introduction

Everyone knows that motion pictures are uncertain products. In this paper we
show that film makers must operate under such vague and uncertain knowledge
of the probabilities of outcomes that “no one knows anything”. The essence of
the movie business is this: The mean of box-office revenue is dominated by a few
“blockbuster” movies and the probability distribution of box-office outcomes has
infinite variance! The distribution of box-office revenues is a member of the class
of probability distributions known as Lévy stable distributions. These distributions
are the limiting distributions of sums of random variables and are appropriate for
modeling the box-office revenues that motion pictures earn during their theatrical
runs.
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Lévy stable distributions have a “heavy” upper tail and may not have a finite
variance. Our parameter estimates of the asymptotic upper tail index reveal that the
variance of box-office revenue is in fact infinite: Motion pictures are among the
most risky of products. Theoretically, the skewed shape of the Lévy distribution
means there is no natural scale or average to which movie revenues converge.
Movie revenues diverge over all possible values of outcomes. One can forecast the
mean of box-office revenue since it exists and is finite, but the confidence interval
of the forecast is without bounds. The far-from-normal shape of the Lévy probab-
ility distribution of box-office revenue and its infinite variance are the sources of
Hollywood’s “terror of the box office”.

Our results explain heretofore puzzling aspects of the movie business. The
average of motion picture box-office revenues depends almost entirely on a few
extreme revenue outcomes in the upper tail whose chances are extremely small.
Success is tied to the extremal events, not the average; the average is driven by
the rare, extremal events. The mean and variance of the distribution drift over time
and do not converge or settle to an attractor. Movie projects are, in reality, probab-
ility distributions and a proper assessment of their prospects requires one to do a
risk analysis of the probabilities of extreme outcomes. The normal distribution is
completely unsuited for this kind of analysis because when outcomes are normally
distributed, the probability of extreme outcomes is vanishingly small. The movie
business is not “normal” because outcomes do not follow a normal probability
distribution. The probability distribution is highly skewed with a “heavy” upper
tail with a theoretical variance far beyond the sample variance. Our estimates of
the theoretical Lévy distribution permit calculation of the probability of box-office
revenues that have never before been realized.

There are no formulas for success in Hollywood. We find that much conven-
tional Hollywood wisdom is not valid. By making strategic choices in booking
screens, budgeting, and hiring producers, directors and actors with marquee value,
a studio can position a movie to improve its chances of success. But, after a movie
opens, the audience decides its fate. The exchange of information among a large
number of individuals interacting personally unleashes a dynamic that is complex
and unpredictable.1 Even a carefully managed and expensive marketing program
cannot direct the information cascade; it is a complex stochastic process that can
go anywhere.2

We conclude that the studio model of risk management lacks a foundation in
theory or evidence. Revenue forecasts have zero precision, which is just a formal
way of saying that “anything can happen”. Movies are complex products and the
cascade of information among film-goers during the course of a film’s theatrical
exhibition can evolve along so many paths that it is impossible to attribute the
success of a movie to individual causal factors. In other words, as Goldman said,
“Nobody knows anything”. The audience makes a movie a hit and no amount of
“star power” or marketing hype can alter that.3 The real staris the movie.
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2. Related Literature

Three strands of literature are relevant to our topic: one dealing with motion pic-
tures and uncertainty, one dealing with stars, and another dealing with power law
probability distributions.

2.1. MOTION PICTURE UNCERTAINTY

De Vany and Walls (1996) modeled the motion picture information cascade as a
Bose–Einstein statistical process and they argued that it converged on a Pareto
distribution; Walls (1997) and Lee (1998) replicated these findings for another
market and time period, respectively. In a rank tournament model of the motion
picture market, De Vany and Walls (1997) modeled a film’s theatrical run as a
stochastic survival process with a rising hazard rate; Walls (1998) replicated these
results for another market. De Vany and Eckert (1991) portray motion pictures as
a market organized to deal with the problem that film makers “don’t know any-
thing” and showed that the studio system and block booking were adaptations to
uncertainty.4 In a related context, where outcomes are uncertain, Chisholm (1996,
1997) and Weinstein (1998) examine the use of share contracts versus a fixed
payment contract for compensating stars.

2.2. STARS

Wallace, Seigerman, and Holbrook (1993) estimate regression models of the rela-
tionship of actors and actresses to film rentals and associate stars with positive or
negative residuals. Prag and Casavant (1994) also estimate film rentals as a func-
tion of production cost, a measure of quality, and an index of star power and find
that these variables are significant only when advertising costs are omitted. Albert
(1998) finds that the distribution of top-20 films among movie stars is consistent
with a consumer choice mechanism that leads to the Yule distribution.5 Ravid
(1998) examines a signaling model of the role of stars and estimates rental and
profit equations, concluding that stars play no role in the financial success of a
film.

2.3. PARETO AND LÉVY DISTRIBUTIONS

Pareto (1897) found that income was distributed according to a power law that was
subsequently named after him. Atkinson and Harrison (1978) found wealth to be
Pareto distributed. Ijiri and Simon (1977) found the size distribution of firms in
the United States and in Britain to be Pareto distributed. Lévy showed that there
is a class of distribution functions which follow the asymptotic form of the law of
Pareto which Mandelbrot defined as

1− FX(x) ∼
(x
k

)−α
x →∞ . (1)
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Such distributions are characterized by the fact that 0< α < 2 and they have
infinite variance. The Lévy is a generalization of the normal distribution when
the variance is infinite. Mandelbrot (1963) found that the distribution of cotton
price changes is approximated by the Lévy distribution. Fama (1963) described
an information process (similar to Bose–Einstein information updating) that could
lead to a Lévy stable distribution. Both S&P 500 stock index and NYSE com-
posite index returns are well-fitted by a Lévy distribution (Mantegna and Stanly,
1995, and Soloman and Levy, 1998, respectively). This paper adds motion picture
revenues to the list of processes that follow a Lévy distribution.

3. Modeling Star Power

One has to be humble in approaching this subject – the movie business is com-
plicated and hard to understand. There are many reasons for this difficulty: motion
pictures are complex products that are difficult to make well; no one knows they
like a movie until they see it; movies are “one-off” unique products; their “shelf
life” is only a few weeks; movies enter and exit the market on a continuing basis;
movies compete against a changing cast of competitors as they play out their
theatrical “runs”; most movies have but a week or two to capture the audience’s
imagination; a rare handful have “legs” and enjoy long runs; weekly box-office
revenues are concentrated on only three or four top ranking films; most movies
lose money.

These characteristics of the business led us to model movies as stochastic dy-
namic processes in our earlier work (De Vany and Walls, 1996, 1997). This work
has convinced us that a fruitful way to model the movies is to treat them as probabil-
ity distributions. We model the distribution of probability mass of movie outcomes
on the outcome space and strive to uncover how the mass is shifted when cer-
tain conditioning variables are changed.6 Among the variables that we consider as
potential probability-altering variables are sequels, genres, ratings, stars, budgets,
and opening screens. We also consider individual stars and how much power they
have to move the movie box-office revenue probability distribution toward more
favorable outcomes.

3.1. MODELING PROBABILITY MASS

Formally our strategy is to characterize the unconditional probability distribution
of movies, without qualification as to genre, stars or other variables that may
condition the distribution. Then we characterize the distribution conditional on
a list of choice variables that potentially alter the location of the distribution’s
probability mass. We consider the cumulative density function and the probability
density functions in continuous and discrete form. Symbolically, we examine the
conditional cumulative density function

F(x | EZ) , (2)
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wherex is a random variable, andEZ is a vector of conditioning variables on which
F depends. We seek to find the form ofF and the conditional distribution ofF with
respect toEZ. The random variablex will be box-office revenue, profits, or some
other variable of interest and the components of the vectorEZ will be budgets, stars,
sequels, ratings, and other variables that might alterF . We follow a similar model-
ing strategy for the probability density function. We also rely on a discrete version
of this model by estimating the effects of changes in the conditioning variables on
the quantiles of the distribution or the probability of a specific event.

In our other work, we found that the dynamics of audiences and box-office
revenues follow a Bose–Einstein statistical process. It is known that the Bose–
Einstein allocation process has as its limit a power law and this holds for the rank
order statistics (Hill, 1975) and for the density function (Ijiri and Simon, 1977).
Based on these considerations, we expect the probability distribution of motion
picture outcomes for extreme outcomes to follow a power law. The Bose–Einstein
information process is a stable process (see Fama (1963) on stable information
processes and De Vany (1997) on the stability of the Bose–Einstein process), so
we expect the distribution generated by a Bose-Einstein process to be in the Lévy
stable class. In this class of distributions, only the normal distribution has finite
variance. Probability mass in the tail decays as a power ofx, x−α, in the power
law but exponentially,e−x in the normal distribution. Second and higher moments,
therefore, may not converge for a power distribution: Var(x) = ∫

x2f (x)dx =∫
x2x−αdx. If α < 2, the productx2x−α diverges asx →∞.
Analysis of the data further sharpens our expectation that a Lévy stable process

is at work. As we show below, the mean is dominated by extreme outcomes, which
is characteristic of Lévy stable processes. The sample variance is unstable and less
than the theoretical variance, also indicators of a Lévy stable process. A further in-
dicator of a stable process is our discovery that the rank and frequency distributions
are self-similar.

3.2. RISK AND SURVIVAL ANALYSIS

If, as we expect, the variance of the probability distribution of movie outcomes is
infinite, then it is not useful or even well-defined to rely on the second moment to
make probability-based judgments about movies. One can, however, do risk and
survival analyses. In a risk analysis, we consider the probabilities that are attached
to certain outcomes in the upper tail. This is a well-defined exercise, even when the
variance is infinite. In a survival analysis, we consider the conditional probability
that a movie will continue to earn more, given that it already has earned a certain
amount. This also is well defined for the Lévy distribution and the conditional
probability of continuation of a movie’s run can be calculated from the distribu-
tion function. These kinds of analyses require that we model quantiles, extremals,
and probability mass over motion picture outcomes rather than rely on traditional
measures like mean and variance.
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Figure 1. Cumulative probability for movies with and without stars.

Figure 2. The continuation function for movies with stars.
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The question then becomes this: How do stars, genre, release patterns,et cetera,
alter the quantiles, extremals, probability mass, and survival functions of motion
pictures? These are well-defined questions even for infinite variance distributions,
where mean-variance analysis fails. An example will make this clear. Consider the
cumulative distribution function and its associated continuation function7 shown in
Figures 1 and 2. In the first figure, the abscissa – the outcome space – corresponds
to motion picture revenue outcomes and the ordinate corresponds to the cumulative
probability of all outcomes up to each point in the outcome space. Once we identify
the functional form and parameters of the cumulative probability function, we can
calculate the probability of an outcome or set of outcomes. If, in addition, we
are successful in identifying how this function is shifted when movies have stars
or different release patterns and so on, then we can calculate how these decision
variables alter the probabilities of specific outcomes.

In fact, we do identify the conditional probability density functions of movies
with stars and without stars and these distributions are identified in Figure 1. It
is a simple matter to calculate the probability that a movie will earn box-office
revenues equal to or greater than $50 million and then to further calculate how
stars alter those probabilities. Using the continuation function, we can also calcu-
late the probability that a movie will continue its run, given that it already has
earned $50 million or $300 million, or any amount. The continuation function
plotted in Figure 2 is what we find for movies with stars. The curve shows for
every revenue outcome the probability that the movie will continue to go forward
to higher revenues, conditional on it having earned some amount. Note that the
continuation probability declines very slowly, an indication of the infinite variance
and the power law decay in the upper tail. Using risk and continuation analyses
we can predict the probability of events never before experienced. The slow decay
of the continuation probability predicts unheard of successes likeThe Full Monty
or Titanic and shows that the probability of even more striking successes does not
vanish.

4. The Movie Data

4.1. DATA SOURCES AND DEFINITIONS

The data include 2,015 movies that were released in the closed interval 1984–1996.
Information on each movie’s box-office revenue, production cost, screen counts by
week, genre, rating, and artists were obtained from ACNielson EDI Inc.’s histor-
ical database. The box-office revenue data include weekly and weekend box-office
revenues for the United States and Canada compiled from distributor-reported fig-
ures. These data are the standard industry source for published information on the
motion pictures and are used by such publications asDaily Variety and Weekly
Variety, The Los Angeles Times, The Hollywood Reporter, Screen International,
and numerous other newspapers, magazines, and electronic media.
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Each actor, producer, or director appearing onPremier’s annual listing of the
100 most powerful people in Hollywood or on James Ulmer’s list of A and A+
people is considered to be a “star” in our analysis.8 In our sample, 1689 movies do
not have a star, meaning they do not feature an actor, director, writer, or producer
whose name appears on the lists of stars . 326 movies feature a star, about 20 to
40 movies a year. Sources list fifteen genres – action, adventure, animated, black
comedy, comedy, documentary, drama, fantasy, horror, musical, romantic comedy,
science fiction, sequel, suspense and western. There are four ratings: G, PG, PG-
13, and R. The most common genre is drama, followed by comedy. R is by far the
most common rating – accounting for more than half – followed by PG-13. The
least frequent rating is G.

4.2. A FILM ’ S THEATRICAL RUN

Dynamics are an essential feature of motion pictures. Movies open, play out their
run over the course of a few weeks, and then are gone. Demand and supply are
dynamic and adaptive processes. Initially, a movie is booked on theaters screens for
its opening. The contract will usually call for a minimum run of from 4 to 8 weeks.
During the run demand is revealed and the supply of theatrical engagements is
adjusted. On a widely released movie, the number of screens on which it is shown
will typically decline during the run. But, that is far from certain; some widely
released movies become so popular that the number of screens may not decline
and might even increase during the run.

Motion picture runs are highly variable. Figure 3 plots the temporal pattern of
screen counts for several films that were widely released. The upper panel shows
the run profile ofWaterworld, a highly promoted film (starring Kevin Costner) with
a production budget of $175 million: it opened on over 2000 screens and had fallen
to 500 screens by the tenth week of its run. In contrast toWaterworld is Home
Alone, a film with a much smaller budget and which featured no stars: it opened on
just over 1000 screens and grew to peak at over 2000 screens in the eighth week
before starting a slow decline. The box-office gross forHome Alonewas nearly four
times as large as the box-office gross forWaterworld. The lower panel of Figure 3
shows the run profiles for the series ofBatmanfilms: Batman, Batman Forever,
andBatman Returns. SuccessiveBatmanfilms cost more to make, opened more
widely, played out more rapidly, and earned less at the box office.

Figure 4 shows the run profiles for smaller budget films. The top panel of the
figure shows the run profiles for four films that opened on about 500 screens.
Excessive Forcefell rapidly from the first week, whileNixon rose to peak at 977
screens in the third weak and then fell rapidly.Serial Mom’s run profile was flat to
the fifth week and then it fell, whileHouse Partyhad “legs” and was still playing on
430 screens at the tenth week of its run.Excessive Force, Serial Mom, Nixon, and
House Partygrossed about 0.8, 5, 9, and 20 million dollars, respectively, at the box
office. The lower panel of Figure 4 shows the run profiles of three highly successful
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Figure 3. Wide releases: Hits, bombs, and sequels.
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Figure 4. Narrow releases: Growth, death, and legs.
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Table I. Screen statistics by number of weeks survived

Week Obs. Min. 25% 50% 75% Max. Mean Std. dev.

1 1500 1 99 994 1472 3012 927 746

2 1461 1 145 1032 1536 3012 977 752

3 1400 1 141 881 1453 3012 906 744

4 1326 1 158 706 1314 2977 818 708

5 1246 1 135 520 1164 2901 717 658

6 1165 1 119 449 1020 2808 639 610

7 1081 1 107 377 898 2532 569 558

8 997 1 96 332 817 2384 510 510

9 915 1 82 292 710 2316 454 463

10 853 1 78 264 596 2331 409 427

micro-budget films.Sex, Lies, and Videotapeand The Brothers McMullenwent
through tremendous growth after their initial releases.El Mariachi got “legs” even
though it opened on only 66 screens; it was still showing on 35 screens ten weeks
after its release.

About 65–70 percent of all motion pictures earn their maximum box-office
revenue in the first week of release; the exceptions are those that gain positive
word-of-mouth and enjoy long runs. The point of widest release for most movies
is the second week, but the maximum revenue is in the first week. However, if a
movie had good revenues in the first week, other exhibitors may choose to play it
in the following week, or exhibitors currently showing it could add screens. This is
an attempt to accommodate growth in demand after the film’s initial exhibition.9

Table I shows the distribution of screen counts for films that survived to a given
week of run.10 Average (mean and median) screen count is at a maximum in the
second week and it falls quickly as films play out. The median screen count fell
from 994 in week 1 to 264 in week 10 for the 57 films that lived that long.11

The distribution of screen counts across films becomes more skewed along the run
profile. In week 1 the mean and median screen counts are 927 and 994, respectively.
By week 10, the median screen count is 264 while the mean screen count is 409.

Table II shows the average proportion of cumulative revenues earned in each of
the first three weeks of release. About 35, 19, and 12 percent of all box-office reven-
ues are earned in the first, second, and third weeks of a film’s release, respectively.
About 70–72 percent of each week’s revenues are earned during the weekends,
which account for 3/7 (43%) of the week. Nearly 85 percent of all films open on the
first day of the weekend, Friday. About 13 percent open on Wednesday, 1 percent
on Thursday, and less than 1 percent opening on the remaining days combined.
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Table II. Weekly box-office gross relative to total gross

Week 1/total Week 2/total Week 3/total

Year Mean Std. dev. Mean Std. dev. Mean Std. dev.

1984 0.289 0.230 0.199 0.099 0.123 0.058

1985 0.303 0.262 0.188 0.104 0.125 0.078

1986 0.312 0.290 0.188 0.108 0.118 0.075

1987 0.306 0.277 0.177 0.107 0.115 0.066

1988 0.325 0.295 0.163 0.117 0.108 0.076

1989 0.364 0.304 0.187 0.126 0.115 0.071

1990 0.323 0.278 0.181 0.111 0.122 0.073

1991 0.316 0.279 0.174 0.104 0.121 0.070

1992 0.320 0.273 0.178 0.109 0.121 0.068

1993 0.346 0.272 0.193 0.106 0.120 0.071

1994 0.339 0.265 0.193 0.103 0.123 0.073

1995 0.364 0.271 0.206 0.102 0.126 0.063

1996 0.350 0.265 0.194 0.100 0.129 0.075

4.3. REVENUES, BUDGETS, AND PROFITS

4.3.1. Revenues

Table III shows box-office revenues in constant 1982–1984 dollars for our sample
motion pictures. The table also shows the composition of the sample by rating,
genre, and the presence of a star. The mean revenue in the sample was $17 million
and this was much larger than the median of $6.9 million. In fact, the mean was
the 71st percentile of the revenue distribution, an indication of its rightward skew.
Median revenues varied from $1.14 million for black comedies to $16.1 million
for sequels. Movies without stars had a median gross revenue of about $20.9
million, while movies with stars had a median gross revenue of about $38.2 mil-
lion. For movies without stars, the mean revenue was equal to the 70th percentile,
while for movies with stars the mean revenue was equal to the 62nd percentile. A
Kolmorogov–Smirnov test allows us to reject the null hypothesis of equality of the
revenue distributions for movies with and without stars.12 In fact, movies with stars
stochastically dominate movies without stars in terms of box-office gross.

4.3.2. Production Budgets

The distribution of budgets is highly skewed, but not as skewed as the revenue
distribution: The mean is $11.8 million and this is the 62nd percentile. Median
budgets varied widely from about $1.9 million for documentaries to $17.4 million
for movies in the science-fiction genre. Movies without stars had a median budget
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Table III. Box-office revenue quantiles by rating, genre, and stars

25%ile 50%ile 75%ile Mean Std. dev.

Genre

Action 1.76 8.20 20.6 17.9 28.1

Adventure 1.20 9.94 20.4 16.2 21.6

Animated 2.82 15.3 44.0 35.5 47.8

Black comedy 0.25 1.13 4.48 6.10 14.8

Comedy 1.47 7.62 23.7 18.2 27.4

Documentary 0.40 0.60 4.05 6.78 15.1

Drama 0.65 3.59 14.8 11.5 19.6

Fantasy 4.38 10.7 32.3 19.5 19.6

Horror 2.33 6.69 12.8 11.2 14.5

Musical 1.41 5.68 9.95 9.53 13.6

Romantic comedy 1.41 7.58 22.6 17.2 24.6

Sci-Fi 4.32 12.0 28.6 28.7 47.9

Sequel 7.09 16.1 41.0 29.8 33.6

Suspense 0.45 5.04 15.6 15.4 26.7

Western 2.99 14.5 38.0 28.7 37.0

Total 1.16 6.94 20.6 17.0 26.8

Rating

G 2.57 10.1 22.8 25.8 39.9

PG 1.56 11.2 28.8 21.5 30.0

PG-13 1.92 8.43 23.9 19.6 31.5

R 0.81 5.17 15.8 13.5 21.1

Total 1.16 6.94 20.6 17.0 26.8

Star

No 0.85 4.86 15.0 12.2 20.9

Yes 13.3 32.5 58.7 41.5 38.2

Total 1.16 6.94 20.6 17.0 26.8

Note: All monetary magnitudes are reported in millions of constant 1982–
1984 dollars.

of about $9.7 million and movies with stars had a median budget of about $22.8
million. The mean budget for movies without stars was the 61st percentile and
the mean budget for movies with stars was the 57th percentile. The results of a
Kolmogorov–Smirnov test indicated that we could reject the null hypothesis of
equality of distributions of budgets for films with and without stars.13 Budgets of
films with stars also stochastically dominate films without stars.
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Figure 5. Gross profit versus budget.

4.3.3. Profits and Returns

Most movies are unprofitable. Large budgets and movie stars do not guarantee
success. Even a sequel to a successful movie may be a flop. Figure 5 shows a plot
of gross profits versus budgets.14 The figure makes clear that large budgets and star
presence can create the biggest of flops, like the filmWaterworld. Much smaller
budgets and lack of star presence do not prevent a film from becoming a box-office
hit, like Home Alone. And while sequels often do well, the series ofBatmanfilms
were successively more costly and less profitable. The median movie lost about 3.8
million (1982–1984) dollars and a film had to reach all the way up into the 78th
percentile of the gross profit distribution before it broke even in its theatrical run.15

Most micro-budget films die after a few weeks, but the ones that survive earn
very high rates of return, the highest earned by any motion pictures.The Brothers
McMullen, El Mariachi, andSex, Lies, and Videotapegrossed 417, 292, and 25
times their respective production costs. Even though their rates of return are often
high, small films earn small absolute profits.The Brothers McMullenearned only
$3 million in gross profits. Only the big budget films have the potential to earn
large absolute profits or losses.16

Table IV provides a simple measure of the gross return to budget, rev-
enue/budget. Since film rentals are approximately one half of box-office revenues,
a gross return of 2 would be equivalent to a film breaking even.17 The mean return
for a film was 1.86, and this is the 76th percentile of the return distribution. Median
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Table IV. Gross rate of return quantiles by rating, genre, and star

25%ile 50%ile 75%ile Mean Std. dev.

Genre

Action 0.30 0.71 1.55 2.50 19.15

Adventure 0.14 0.77 1.65 1.49 2.49

Animated 0.41 1.43 2.90 2.49 4.03

Black comedy 0.09 0.22 0.82 0.56 0.74

Comedy 0.23 0.81 2.15 2.01 6.13

Documentary 0.24 0.31 1.61 1.35 2.09

Drama 0.12 0.47 1.40 1.81 17.19

Fantasy 0.33 0.83 1.61 1.06 0.98

Horror 0.44 1.05 2.12 1.56 1.60

Musical 0.15 0.55 1.24 1.71 3.94

Romantic comedy 0.23 0.93 1.78 1.87 4.29

Sci-Fi 0.38 0.58 1.43 1.19 1.31

Sequel 0.71 1.59 2.41 1.92 1.74

Suspense 0.09 0.51 1.43 1.26 2.59

Western 0.24 0.62 1.78 1.76 2.72

Total 0.20 0.72 1.78 1.86 11.81

Rating

G 0.40 1.24 2.38 2.15 3.46

PG 0.25 0.89 2.15 1.66 2.23

PG-13 0.21 0.68 1.78 1.39 2.20

R 0.18 0.66 1.66 2.14 16.16

Total 0.20 0.72 1.78 1.86 11.81

Star

No 0.15 0.59 1.63 1.80 12.86

Yes 0.63 1.36 2.77 2.13 2.40

Total 0.20 0.72 1.78 1.86 11.81

Note: Gross return is defined as Revenue/Budget. Since rentals are about half of box-office gross,
an approximate return to the studio is 0.5*(gross return)–1. The breakeven gross return is 2.

gross returns varied substantially from 0.23 for black comedies to 1.6 for sequels.
For movies without stars, the median gross return was about 0.6; assuming that
film rentals are half of box-office gross this translates into a net rate of return of
about –70%. For movies with stars, the median gross return was about 1.37, and
this corresponds to a net rate of return of about –32%.
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Table V. The Pareto rank distribution for movies. log Revenue=
logβ1+ β2 log Rank+ β3Star+ β4[log Rank× Star] + µ

(1) (2) (3) (4)

Estimator LS LS MAD Robust

log Rank –1.825 –2.149 –2.161 –2.147

(0.029) (0.037) (0.024) (0.024)

[0.047] [0.072] [0.059]

log Rank 1.153 1.327 1.284

× STAR (0.069) (0.046) (0.046)

[0.090] [0.066]

STAR –4.086 –4.918 –4.798

(0.258) (0.171) (0.172)

[0.354] [0.281]

Constant 22.865 24.276 24.797 24.667

(0.128) (0.162) (0.108) (0.108)

[0.196] [0.316] [0.258]

R2 0.650 0.692 0.515 –

Notes:
Dependent variable is log revenue.
Estimated standard errors in parentheses.
LS is least squares. White’s robust standard errors in brackets.
MAD is median regression. Bootstrapped standard errors with 100
replications in brackets. Pseudo R2 reported.
Robust is the version of robust regression implemented in STATA and
described in detail by Hamilton (1991).
All regression run on common set of 2015 observations.

Stars increase the median of the returns distribution much more than the mean;
they make the distribution less skewed. The mean return with no stars is at the 78th
percentile, while the mean return with stars is at the 67th percentile. We performed
a Kolmogorov–Smirnov test for equality of distributions and could reject the null
hypothesis that the returns distributions were equal for movies with and without
stars at a marginal significance level of practically zero. However, movies with
stars do not stochastically dominate movies without stars in terms of gross return
to budget. The largest gross return to a movie with a star was 16.7 times produc-
tion cost for (Beverly Hills Cop); this movie also had a large box-office revenue.
However, most movies with very large gross returns did not have stars, had low
revenues, and tiny budgets.18 The successful micro-budget non-star movies have
tremendous returns on budget, but they earn a less absolute profit than a big-budget
production with a gross return of 3 times production cost.



U
N

C
E

R
TA

IN
T

Y
IN

T
H

E
M

O
V

IE
IN

D
U

S
T

R
Y

301

Figure 6. Pareto rank distribution by year.
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5. Estimation Results

5.1. THE SIZE DISTRIBUTION OF BOX-OFFICE REVENUES

One of the ways star power might work is in moving a movie up in the money
rankings by getting it booked on many screens at the opening. Once there, more
viewers might be drawn to it if the ranking is taken by movie-goers to be an
indicator of entertainment value. Figure 6 plots the box-office revenue and rank
for each year in our sample. It is clear that the size distribution of revenue is
uneven and highly convex in rank. This is consistent with the distribution of box-
office revenues following the Pareto rank law:SRβ2 = β1, whereS is the size
of box-office revenues,R is the rank (1=highest), andβ1 andβ2 are parameters.
The exponentβ2 is an indication of the degree of concentration of revenues on
movies because it indicates the relative frequency of large grossing movies to small
grossing movies.19

The Pareto rank law can be written as

log Revenue= logβ1+ β2 log Rank+ β3Star+ β4[log Rank× Star] + µ . (3)

This is the form we estimate. Table V shows our estimates of the Pareto rank
law regressions. Column 1 shows the results restricting the Pareto parameters to
be equal for all movies, with and without stars. In this case, we get a value of
β̂2 = −1.825 indicating a very high degree of inequality. In column 2 the estimates
allow the Pareto rank parameters to differ for movies with and without stars. The
estimates indicate that the intercept term is a little smaller and that the slope is
much flatter among movies with a star:β̂2 = −0.996 for movies with stars versus
−2.149 for movies without stars. As we have seen, star movies have larger budgets,
wider releases, and possibly even better scripts, so these differences in distributions
cannot be solely attributed to stars.

Table VI shows estimates of the Pareto rank law regressions for 6 two-year
intervals. With the exception of 1985–1986, the Pareto rank parameters show little
change. The Pareto rank law has remained quite stable over the years in spite of
escalating production and advertising budgets. Independence of form on the time
scale of the data is a feature of power law distributions that describe processes
that are self-similar on all scales; this is revealed in the similarity of the rank-
revenue curves plotted in Figure 6. The Pareto rank distribution is a remarkably
good fit for all movies, with or without stars. Hence, the distinguishing factor that
causes movies to be strongly ranked in terms of revenue cannot be traced to stars.
It is a natural order, durable over time and place.20 The steep decline in box office
revenue share with declining rank has remained stable during a decade of change
in advertising and production budgets, the use of stars, and changes in opening
release patterns.21
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Table VI. The Pareto rank distribution of movies by year.
log Revenue= logβ1+ β2 log Rank+ β3Star+ β4[log Rank× Star] + µ

(1) (2) (3) (4) (5) (6)

Year 85–86 87–88 89–90 91–92 93–94 95-96

log Rank –1.649 –2.189 –2.487 –2.058 –2.247 –2.130

(0.075) (0.085) (0.086) (0.078) (0.109) (0.107)

[0.113] [0.180] [0.199] [0.153] [0.198] [0.227]

log Rank 0.810 1.181 1.204 1.115 1.333 1.145

× STAR (0.165) (0.168) (0.188) (0.136) (0.170) (0.175)

[0.138] [0.286] [0.242] [0.185] [0.211] [0.253]

STAR –2.441 –4.392 –4.492 –4.043 –4.729 –4.095

(0.570) (0.611) (0.719) (0.521) (0.623) (0.680)

[0.494] [0.984] [1.028] [0.762] [0.847] [1.057]

Constant 22.024 24.519 25.647 24.135 24.634 24.333

(0.305) (0.380) (0.378) (0.348) (0.460) (0.474)

[0.442] [0.804] [0.930] [0.685] [0.824] [0.996]

R2 0.724 0.698 0.708 0.730 0.686 0.635

Observations 231 369 447 361 278 329

Notes:
Dependent variable is log revenue.
Estimated standard errors in parentheses.
White’s robust standard errors are in brackets.

5.2. OPENING AND STAYING POWER

Do stars give a movie opening power or staying power? Stars might increase a
movie’s prospects by getting it booked on more theater screens at its opening.
Conventional wisdom in Hollywood is that star power is opening power. Another
way that stars might affect a movie is by bringing a level of performance to it that
lifts the movie above the ordinary.

We estimated screen counts of movies at week 1, week 5, and week 10. These
were chosen because week 1 corresponds to the opening, though not always if the
film is given an initial “pre-release” before it opens. Week 5 is chosen because it
would be the week after a contract requiring a four week minimum run would no
longer bind the movie to a theater. If a movie is still grossing high numbers at the
end of its minimum contracted run, the hold-over clause will keep it in the theater
until revenue drops below the hold-over amount. Week 10 was chosen for similar
reasons for movies that might have an eight week minimum run contract.

Table VII contains the results of the estimation. Holding budget and other
factors constant, the estimates indicate that a star increases the number of opening
screens by around 126 or about 18 percent. By week 5, a star raises screen count
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Table VII. Regressions of screens at weeks 1, 5, and 10

Variable Screens at week 1 Screens at week 5 Screens at week 10

Budget 34.175 67.630 28.160 39.692 7.267 12.881

(millions) (1.639) (2.949) (1.671) (3.164) (1.070) (2.017)

Budget2 –0.746 –0.244 –0.116

(0.050) (0.052) (0.031)

STAR 133.455 122.958 359.456 348.966 160.265 155.373

(42.231) (40.430) (42.405) (42.206) (27.298) (27.332)

Genre Yes Yes Yes Yes Yes Yes

Sequel 781.557 638.136 455.897 408.134 235.792 202.162

(200.707) (191.931) (206.715) (205.417) (138.200) (137.520)

Rating Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes

Constant 251.844 123.508 332.926 291.491 199.476 184.680

(235.194) (224.561) (243.948) (241.977) (166.832) (165.484)

Observations 1500 1246 853

Notes:
Parameters estimated by robust regression.
Estimated standard errors in parentheses.

by even more – 359 screens. And by week 10 a star still increases screen count by
160. The estimates retain high statistical significance throughout. Even though the
coefficients decline, they become larger relative to the median number of screens.
Consequently, stars give more kick to screen counts later than at the opening of a
movie’s run. In its first week, a movie with a star will have about twenty percent
more screens than a movie without a star. By its fifth week a movie with a star
will have nearly twice as many theaters as a movie without a star. And by the tenth
week nearly three times as many. The effect becomes more pronounced later in the
run.

The estimates also show that bigger budgets produce more opening screens:
an increase in the budget of one million dollars corresponds to an increase of 36
screens in the opening week. Given that the median production budget for a film
was less than 10 million dollars and the mean was $32 million, the effect of a
big budget on opening screens does not rise to economic significance. In terms of
opening screen counts, a star is worth as much as an extra six million dollars in
the production budget. By week 10 the size of the budget has a small effect on
the number of screens; a million dollars of production cost only buys seven more
screens in the tenth week.
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Figure 7. Asymptotic Pareto law for box-office gross.

Sequels open on nearly twice as many screens as the average movie. However,
during the remainder of the run the sequel advantage declines. By week 10, the
sequel advantage is statistically not different from zero.

In modeling screens in week 1 we are primarily modeling the behavior of theater
bookers who select films to exhibit. By week 5 we are closer to seeing what the
audience likes and not what the booking agents think. And, by week 10 we have a
pretty clear vision of what counts with the audience. By then, sequels and budgets
become unimportant which suggests that booking agents do not always share the
tastes or perceptions of the audience.22 Star movies have more staying power than
opening power.

5.3. THE ASYMPTOTIC PARETO DISTRIBUTION

The Pareto rank distribution estimated above is an excellent model of the inequality
of motion picture revenues, but it tells us little about the probability distribution
of revenues. In order to fix probabilities so that we are able to assess the box-
office expectations of a movie before it is released, we must estimate probability
distributions. As we discussed in Section 2, the Lévy stable process converges
asymptotically to a Pareto distribution asx → ∞. To estimate the asymptotic
Pareto law of Equation (2), we set the minimum revenue atk = $40 million.
We fit the Pareto distribution for all movies whose box-office revenues equaled
or exceeded $40 million and obtained a maximum likelihood estimate of the tail
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coefficientα of 1.91. Since 1< α < 2 the mean is finite and the variance is infinite.
A Kolmogorov–Smirnov test of equality of the empirical distribution and the the-
oretical Pareto lawF(x) = 1−(x/40)−1.91 does not reject the Pareto distribution at
the 5% significance level. Figure 7 is a plot of the empirical cumulative distribution
against the fitted Pareto distribution. The fit is extraordinary over a wide range of
values running from $40 to $250 million in box-office revenues.

We proceeded to estimatedα separately for movies with and without stars with
k fixed at $40 million. For movies with starsα = 1.72 implying a finite mean
and infinite variance. For movies without starsα = 2.26 implying that both mean
and variance are finite. The small value ofα and infinite variance of star movies
indicates they have more probability mass in the upper tail than movies without
stars.

Note how different the Pareto distribution looks relative to the normal distri-
bution that is used as a matter of course in all sorts of statistical analyses. The
probability density of the Pareto is “piled up” on the small box-office revenues
because most movies earn small revenues. Unlike the normal distribution, where
there is a piling up of density in the center around the mean, there is no central
tendency in the Pareto distribution. The probability slopes away to the right, where
the rare and big grossing films are. The Pareto distribution for values ofα < 2 (the
star movies) has more upper tail mass than the normal distribution.

5.4. THE PROBABILITY OF A HIT

Because forecasting expected revenue is imprecise and lacking in foundation, we
examine another approach. How are stars, budgets, genre, rating, and opening
screens associated with the probability that a movie will be a hit? These are all
variables that can be chosen; if their impact on the probabilities of certain outcomes
can be predicted, then better choices might be possible. The problem is that the
subtle shifts in probability distributions are difficult to measure and we still face
the infinite or nearly infinite variance.

Our attack on this problem is to examine the probabilities of extreme outcomes.
We examine the probability that a movie will be a hit, which we define as earning
a box-office revenue of fifty million or more. Even with a Pareto distribution of
unbounded variance, this exercise is meaningful because we are discretizing the
distribution and can easily calculate the probability that revenue will equal or
exceed $50 million. We carry this exercise out by modeling the conditional hit
probability as a function of the film’s budget, star presence, genre, rating, year of
release, survival time, and number of opening screens.

Column (1) of Table VIII contains the parameter estimates and the associated
marginal probabilities – the change in the probability that a movie becomes a hit
for a unit change in the corresponding independent variable. The individual para-
meters are all statistically significant. The estimates indicate that a higher budget
is associated with a higher hit probability. The star variable has a higher marginal
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Table VIII. Estimating the probability of a hit

Variable (1) (2) (3)

Coeff. Marg. prob. Coeff. Marg. prob. Coeff. Marg. prob.

Budget 4.82e-08 4.05e-09 4.45e-08 4.09e-09 3.19e-08 8.10e-10

(5.06e-09) (4.98e-10) (5.50e-09) (5.84e-10) (6.58e-09) (4.03e-10)

STAR 0.92979 0.13440 0.98622 0.15379 0.84640 0.04306

(0.11414) (0.02380) (0.12896) (0.02809) (0.14556) (0.01995)

Sequel 0.62257 0.08146 0.64563 0.09126 0.47506 0.01920

(0.20406) (0.03753) (0.22433) (0.04404) (0.26592) (0.01757)

Genre Yes Yes Yes

Rating Yes Yes Yes

Year Yes Yes Yes

Life >= 10 weeks 2.16755 0.07339

(0.47415) (0.01118)

Wide Release 0.90980 0.05519

(>= 2000 screens) (0.19715) (0.02974)

Constant –2.24740 –2.20408 –3.59036

(0.44974) (0.51816) (0.73964)

Pseudo R2 0.306 0.303 0.428

log Likelihood –414.221 –326.052 –267.306

Observations 2015 1500 1500

Notes:
Dependent variable =1 if (revenue >=50 million), 0 otherwise.
Marginal probability is for discrete 0 to 1 change for dummy variables.
Estimated standard errors in parentheses.
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probability than the sequel variable. The same pattern is observed in the results
shown in column (2) where we have estimated on the subset of 1,500 observations
for which we have screen count and life-length data. These data show that our
estimates are not sensitive to the sample selection.

In column (3) of the table two additional variables appear that indicate whether
or not the movie survived for at least ten weeks and whether or not the movie was
released on not less than 2,000 screens. Now the highest marginal probability is on
a run of at least ten weeks, followed by the number of opening screens, then by star,
and sequel in that order. That a long run is the most important factor associated with
a movie becoming a hit is clear evidence that the audience decides a movie’s fate
at the box office and no amount of star power, screen counts, or promotional hype
is as important as the public’s acceptance of the film. Controlling for screens and
life length, a star has the same effect on the average movie’s chances of grossing
at least $50 million in theaters as an additional $40 million on production cost.
Heavy spending on special effects or “production value” is the most risky strategy
for making a movie a hit. Making a movie the audience loves is the surest way
to making a hit, but that takes talents that are more rare than the ability to spend
money. Next in importance to making a good movie in achieving a box-office hit
is to have the movie booked on a large number of opening screens. But this is no
simple task either as booking managers are no doubt influenced by their highly
profitable concession sales.

A big opening is a double-edged sword (De Vany and Walls, 1997). Opening
on many screens preempts screens from other movies and gives a film a shot at a
high rank. High rank movies are more likely to engage the information cascade and
draw positive or negative attention. But, if the critical judgments of the viewers are
predominately negative, the flow of negative information can kill a film and more
swiftly if it is on many screens. On the other hand, a broad opening may bring
large screen revenues in the early weeks of a run. Later, the number of screens is
adjusted to fit demand and the initial number becomes less important.

5.5. STARS AND HITS

To more closely identify the association of individual stars with hit movies, we
re-estimated column 1 of Table VIII using binary variables for individual stars in
place of the single variable indicating the presence of any star in the movie. The
coefficients on most of the individual star dummy variables were insignificantly
different from zero at the 5% marginal significance level: Most stars do not have a
statistically significant association with the probability that a movie will be a hit.
Only a few stars have a non-negligible correlation with hit movies.

Who are the stars with real impact on a movie’s chances of becoming a hit?
Table IX lists the individual stars whose coefficients are statistically significant
and the associated marginal probabilities. Only nineteen stars had a statistically
significant impact on the hit probability. The names on the list are familiar ones.
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Table IX. Stars with statistically significant impact on the hit
probability

Star name Coeff. Std. err. Marg. prob.

Cher 1.283 0.751 0.264

Bullock, Sandra 2.076 0.646 0.569

Carrey, Jim 1.882 0.590 0.493

Costner, Kevin 1.380 0.417 0.297

Cruise, Tom 2.011 0.470 0.542

Douglas, Michael 1.173 0.412 0.226

Eastwood, Clint 1.091 0.520 0.200

Ford, Harrison 1.268 0.433 0.258

Foster, Jodie 1.820 0.952 0.469

Gibson, Mel 1.091 0.421 0.200

Hanks, Tom 1.378 0.357 0.296

Murphy, Eddie 0.997 0.429 0.172

Pfeiffer, Michelle 2.385 0.909 0.682

Pitt, Brad 1.637 0.792 0.396

Schwarzenegger, Arnold 0.813 0.405 0.124

Spielberg, Steven 1.625 0.534 0.391

Stone, Oliver 1.585 0.484 0.375

Travolta, John 1.380 0.385 0.297

Williams, Robin 1.143 0.379 0.216

Notes:
Stars with significant coefficients (10% level, two-sided) in
probit regression of the form of column 1 of Table VIII.
Marginal probabilities are the change in the probability of a
movie being a hit with the presence of the given stars.

But some stars thought to have box-office power do not make the list; for example,
neither Sylvester Stallone nor Robert De Niro were statistically significant. All
the male stars that are thought to be “bankable” are there, along with behind-the-
camera talents Steven Spielberg and Oliver Stone.

The real surprise, given conventional Hollywood wisdom about star power, is
the power of the female stars.23 Four of the top nineteen stars are female. The top
two stars are females and three of the top five stars are females. No star is a “sure
thing” however. They all face the infinite variance of the Lévy distribution, so they
each bring a measure of risk with them. They also have sizable standard errors of
their estimated hit coefficients. Jodie Foster, Michelle Pfeiffer, and Sandra Bullock
have high standard errors, implying that their positive impact is more variable.
Tom Cruise has a small standard error; not only does he have a big impact but his
impact is more certain than the impact of all the stars but Tom Hanks. The smallest
standard error goes to Tom Hanks, though he has a smaller hit impact than Cruise,
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Pfeiffer, Foster, Carrey, and Bullock. Steven Spielberg is the top behind-the-camera
star, with a marginal impact that is slightly higher but more variable than for Oliver
Stone.

Of course, none of these estimates guarantee that a particular star will make
a movie successful. In fact, they assure that no star can guarantee any outcome
because there is infinite variance in the distribution – every star has a sizable prob-
ability of making a bomb. Moreover, it would be an error to attribute causality to
what is only an association between stars and movie outcome probabilities. Causal-
ity could even go in the other direction – a star might just be someone who is lucky
enough to give a fine performance in a terrific movie. Once someone is blessed
with the mantle of stardom, it is clear that better projects and bigger budgets come
his or her way. Hence, their chances of appearing in high grossing movies go up
and their chances of being regarded as stars remain higher than average.

5.6. STARS AND PROFITS

To investigate profits we estimate a simple equation of the form

Profit= f (star, sequel, genre, rating, year) . (4)

where Profit= (0.5 × revenue− budget) is measured in millions of dollars.24

We have reported least squares and robust regression estimates in Table X.25 We
estimated the equation in levels (and not logs) because Profit is negative for a large
proportion of the sample. The equation is a very poor fit, with an R-squared value
of just 0.118. That is as it should be, for were profits predictable, everyone would
make them. The lack of structure of the profit equation is a confirmation of the rule
that “nobody knows anything” when it comes to predicting profits.

To investigate how stars may add structure to this featureless pattern, we re-
estimated the equation with binary variables representing the individual stars. The
twenty-five stars with statistically significant coefficients are reported in Table XI.
Jodie Foster tops the list, followed by Tom Cruise, and now Steven Spielberg moves
into the third position on the profit list. Sandra Bullock and Jim Carrey are about
tied for fourth, with Brad Pitt and Kevin Costner just behind. A few new names
appear that did not show up before such as Warren Beatty, Steve Martin, Francis
Ford Coppola and Robert Redford. De Niro, Nicholson, and Willis appear with
statistically significantnegativecoefficients.

Given all we have said about the nature of the probability distribution, it is
difficult to place an interpretation on these estimates. They primarily reflect the
success that movies with these stars had in the past and do not imply that these
successes will be repeated in the future. Those successes may reflect their perform-
ances or their judgment in choosing movies. It may just be luck in the matching of
actor and movie. A deeper problem is that if the box-office revenue distribution has
infinite or near infinite variance, then no formula will be able to forecast revenue
or profit. Since profit equals some fraction of revenue minus cost, the variance of
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Table X. Profit regressions. Profit= β1+ β2Star+
0[Sequel,Genre,Rating,Year]+ µ

(1) (2)

Estimator LS Robust

STAR 17.144 2.391

(1.349) (0.567)

[2.054]

Sequel 10.633 4.818

(2.270) (0.953)

[2.510]

Genre Yes Yes

Rating Yes Yes

Year Yes Yes

Constant 10.394 1.786

(4.759) (1.999)

[5.058]

R2 0.118 –

Notes:
Dependent variable is profit=(0.5*revenue-budget) in
millions.
All regressions run on common set of 2015 observa-
tions.
LS is least squares regression.
Robust is the robust regression implemented in STATA.
Estimated standard errors in parentheses.
Robust standard errors are in brackets (White’s estim-
ator for LS).

profit will be infinite if the variance of revenue is infinite. Thus, theory indicates
that profits should be asymptotically Pareto-distributed. We find that this prediction
is confirmed and that profits in excess of $10 million are Pareto-distributed with an
infinite variance.

The estimated Pareto exponent for all movies isα = 1.357. For movies without
stars,α = 1.505. For movies with stars,α = 1.261. All the estimates ofα are
greater than 1 and less than 2, implying that the mean of each distribution exists
but the variance is infinite. Kolmogorov–Smirnov tests indicated that we could
not reject the null hypothesis of equality of distributions between the fitted Pareto
and the empirical cumulative distribution functions. Figure 8 plots the fitted Pareto
distribution function against the empirical distribution function for all movies. The
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Table XI. Significant individual stars in the profit regression

Star name Coeff. Std. err.

Beatty, Warren 13.220 4.454

Bullock, Sandra 37.829 4.474

Carrey, Jim 37.298 4.021

Coppola, Francis Ford 6.372 3.637

Costner, Kevin 35.927 2.607

Cruise, Tom 70.827 2.828

De Niro, Robert –5.000 2.391

Eastwood, Clint 19.741 3.167

Ford, Harrison 33.080 2.827

Foster, Jodie 83.069 6.320

Gibson, Mel 20.798 2.586

Hanks, Tom 17.057 2.406

Martin, Steve 10.258 2.590

Murphy, Eddie 10.754 2.718

Nicholson, Jack –12.275 2.985

Pfeiffer, Michelle 15.519 6.298

Pitt, Brad 36.159 5.162

Redford, Robert 9.657 3.680

Schwarzenegger, Arnold 7.045 2.407

Seagal, Steven 21.584 3.407

Snipes, Wesley 7.417 2.995

Spielberg, Steven 48.530 3.383

Stone, Oliver 17.621 3.163

Washington, Denzel 6.287 2.980

Willis, Bruce –7.903 2.708

Notes:
Stars with significant coefficients (10% level, two-sided) in
profit regression of the form of column 2 of Table X.
Coefficients represent the star’s impact on profit in millions
of dollars.

fit is excellent and this is compelling evidence that profits are Lévy distributed as
are revenues.

Stars shift probability mass to higher outcomes. The theoretical mean profits
are $38 million for all movies, $48.3 million for star movies, and $29.8 million for
no-star movies. The variance of profits for movies that earn high profits (≥ $10
million) is infinite for all movies as a group, for movies with stars, and for movies
without stars. A few non-star movies achieve extraordinary profits (Home Alone)
and some star-movies lose extraordinary amounts of money (Waterworld). Both
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Figure 8. Asymptotic Pareto law for profits.

these effects contribute to the heavy tails in the profit distribution. Profits are more
risky and less predictable than box-office revenues.

6. Choosing Among Movie Projects

The movie industry is a small sample business. Studios only get so many chances.
If only the very best survive and the competition is intense, then studios need to
draw a movie project out of the many that are around that will have an extreme
positive result. That is, with just a few draws from the hat the studio has to pull out
an unlikely movie to succeed against its competitors. Finishing first in a large field
requires doing something far from the average and being lucky enough to have it
pay off (Levinthal and March, 1993).

In such highly competitive situations, experience and learning, which are pre-
dictors of success on average, are not closely related to outcomes because success
depends on doing something different – getting an extreme draw in a small sample.
Experience may be a poor teacher in the movies. Effectiveness or success in the
short run and in the neighborhood of recent experience (sequels) interferes with
learning and experimentation in the long run. Since success comes from an unlikely
event in a small sample, it is not reliable to extrapolate success into the future. This
is why it is hard to learn in the movie business.

The movie business encourages selective learning based on extreme events.
Ignoring failures and focusing on successes is built into the process. This is so
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because the statistics of the movies are dominated by a few extreme outcomes.
There are a lot of failures and a few rare and unpredictable successes. Individuals
tend to attribute causality improperly. They tend to attribute their successes to abil-
ity and their failures to bad luck. This error affects how they approach risk in the
movie business. If executives attribute poor outcomes to bad luck, then they will
overestimate risk. They will be inclined to demand a “bankable” star in a movie
before they will make it. If they attribute good outcomes to their ability, then they
will be inclined to take too much risk. Hence, one or two successes can lead to too
much risk taking and a few failures to too little. Probably, most studio executives
overestimate their ability to beat the odds. Of course, not all of them can.26 In the
long run, none of them can beat the odds. The odds are that only about 8 percent
of all movies made gross more than $40 million at the domestic box office. Many
of these are not profitable in spite of their high revenues.

Experience may not be helpful because it cannot produce a rare event. Most rare
events, like the movieTitanic, lie outside the sample and are beyond experience.
If aspirations are based on highly successful movies, then performance is bound
not to match. Even if successful, tying aspirations to successes in the past deters
exploration and innovation that are essential to success in the future; too many
sequels and copies are made and too few genuinely new movies are produced.

Past successes give executives an illusion of control (Langer, 1975; Presson
and Benassi, 1996). They become confident in their ability to manage risk and
handle future events. They have difficulty recognizing the role of luck in their
achievements. Studio executives and producers have little control in this business.
It is a high-skill business because good movies are hard to make. But that very fact
fosters an illusion of control. It is such an uncertain business that the distinction
between causal factors, luck, or the sheer sweep of events is blurred. In a complex
system, where there are many interacting parts and complicated stochastic dynam-
ics, there is no simple form of causality. Everything depends, in some way, on
almost everything else and it will usually be impossible to attribute an outcome to
a cause or complex of causes.

Managerial errors in judgment are fostered by the very nature of uncertainty
in the motion picture industry that is documented in this paper.27 The uniqueness
of individual movies comes from the underlying probability distribution: because
it is a power law, there is no characteristic scale, no central tendency, and events
on all scales happen.28 Thus, there is no typical movie. The hold that last year’s
blockbuster has on the imagination comes also from the power law, a distribution
so highly skewed that blockbusters dominate the mean. Only risk and hazard ana-
lyses are well-defined for this business. The probability that a movie will reach
an extreme outcome in the upper tail, which is required for it to be profitable, is
small. But, the outcomes associated with extremums dominate total and average
revenues and profits. So, risk not only is unavoidable, it is desirable. One wants
to choose movies that have a large upside variance. We have only hinted at how
it might be done here by investigating a few strategies.29 Star movies have that
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kind of variance, but by virtue of that fact they also have unpredictable outcomes.
No star is “bankable” if bankers or studio executives want sure things. Stars only
increase the odds of favorable events that are highly improbable.

7. Conclusions

The movie industry is a profoundly uncertain business. The probability distribu-
tions of movie box-office revenues and profits are characterized by heavy tails and
infinite variance! It is hard to imagine making choices in more difficult circum-
stances. Past success does not predict future success because a movie’s box-office
possibilities are Lévy-distributed. Forecasts of expected revenues are meaningless
because the possibilities do not converge on a mean; they diverge over the en-
tire outcome space with an infinite variance. This explains precisely why “no one
knows anything” in the movie business.

A proper assessment of a movie’s prospects requires a risk analysis of extreme
outcomes. We have demonstrated that estimates of the Lévy distribution parameters
permit calculation of the probability of box-office revenues that have not before
been realized. Film makers can position a movie to improve its chances of success,
but after a movie opens the audience decides its fate: There are no formulas for suc-
cess in Hollywood. The complex dynamics of personal interaction between viewers
and potential viewers appear to overwhelm the initial conditions.30 The difficulties
of predicting outcomes for individual movies are so severe that a strategy of choos-
ing portfolios of movies may be preferred to the current practice of “greenlighting”
individual movie projects.

Notes
? This paper was presented at the annual meeting of the American Economic Association, New

York, January 1999. Walls received support from the Committee on Research and Conference
Grants of the University of Hong Kong. De Vany received support from the Private Enterprise
Research Center of Texas A&M University.

1. See De Vany and Walls (1996) and De Vany (1997) for analyses of information dynamics in the
context of the motion picture industry.

2. It may be possible to “steer” the information cascade, i.e., to affect the conditional probabilities
of branching to different paths. This is a subject of our ongoing research.

3. Industry analyst Art Murphy states this bluntly, “Films succeed or fail on their own merits.
. . . Also, films of mass appeal are relatively impervious to ‘critics’. Films that are going to be
popular are popular” (Dale, 1997, p. 4).

4. Kenney and Klein (1983) and Blumenthal (1988) also examine block booking and blind bidding
for motion pictures.

5. In other research based on our sample of data, we also find that the distribution of hit movies
across movie stars is consistent with the Yule distribution. Our finding suggests that superstar-
dom may be the result of luck since it can happen when individuals are equally talented (Chung
and Cox, 1994).

6. We focus on the domestic North American theatrical market because revenues in this market
are an important determinant of revenues in foreign markets, video, pay television and non-pay



316 ARTHUR DE VANY AND W. DAVID WALLS

television as well as ancillary revenues from soundtracks, books, video games, theme parks, and
other consumer products (Dale, 1997, p. 22; Cones, 1997, pp. 143–144).

7. The continuation function is defined asf (x)/(1− F(x)).
8. Cassey Lee provided us with an electronic copy of the list of stars. We also constructed an

alternative star variable indicating if an actor had been in more than five films. This variable
gave qualitatively similar results toPremier’s and James Ulmer’s lists.

9. For example,Pulp Fictioninitially opened on 1,338 screens, but the first week’s gross per screen
was so high that its release was expanded to 1,489 screens for the second week (Lukk, 1997,
p. 28).

10. Screen count data were only available for 1,500 of the 2,015 movies in our sample.
11. Although a film may play for 10 weeks, it may be earning a very small box-office gross in its

final weeks of theatrical release. For example, in a study using data fromVariety’s national Top-
50 chart, De Vany and Walls (1997) found that the median survival time on the chart was 4
weeks, and in a duration analysis they found that a movie had less than a 25% chance of lasting
longer than seven weeks or more and less than a 15% chance of lasting longer than 10 weeks
or more. Thus, while over 50% of the films in our sample were still playing at the tenth week
of release, only a small fraction of these would be earning enough revenue to be included in the
Top-50 chart.

12. The largest difference between the distribution functions was 0.4927. The marginal significance
level was practically zero.

13. The largest difference between the distribution functions was 0.5084. The marginal significance
level was practically zero.

14. We estimated gross profits as one half of box-office gross less the production budget. This over-
estimates profits from theatrical exhibition because it does not include promotional expenses.

15. This corresponds well to Vogel’s (1990, p. 29) rule of thumb that about 70–80 percent of all
major motion pictures either lose money or break even.

16. But, several small films could be made on the budget of a big-budget film, so one should compare
the returns properly:n × r(Z) relative tor(n × Z), wherer(·) is the returns function,Z is a
small budget, andn is the number of films. One should compare the distribution of returns ofn

films costingZ dollars each with the return distribution of one film with a budget ofn× Z.
17. Our simple notion of breakeven is that rental revenues are equal to the budget. In the industry

there are numerous definitions of breakeven, and through “studio accounting” numerous hit films
such asBatmanwill probably never break even (Cones, 1997, Chapter 1).

18. For example,El Mariachi andThe Brothers McMullenhad gross returns to budget of 292 and
417, respectively. But their absolute profits were small.

19. Ijiri and Simon (1971) model the firm size distribution using this form of the Pareto law.
20. This result has been replicated in other papers covering different time periods and countries. See

De Vany and Walls (1996), Walls (1997), and Lee (1998).
21. The deeper reasons for the relationship have to do with information dynamics and are beyond

the scope of this paper. See Rosen (1981), De Vany and Walls (1996), De Vany (1997), and
Bikhchandani et al. (1992).

22. The glare from the concession stand may blind their vision.
23. Bill Mechanic, Chairman of Twentieth Century Fox, lists no females among his top stars. His

list: Tom Cruise, Harrison Ford, Mel Gibson, Tom Hanks, Arnold Schwarzenegger and John
Travolta. Quoted in John Cassidy, “Chaos in Hollywood,”The New Yorker, March 31, 1997.

24. Recall that profits are calculated for the theatrical market only and do not include foreign and
other revenues. Cost is the estimated budget reported in the EDI data. The 0.5 figure is a rough
estimate of the average rental rate. A high grossing film typically will earn a higher than average
rental rate although a poor performing film on which guarantees were paid may also earn a
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high rate. Consequently, this equation is a crude approximation to profits in the North American
theatrical market.

25. We do not report quantile regressions because the mean absolute deviation estimator would not
converge for the profit regressions. We are tackling this problem in another paper.

26. In our current research we use probability models to estimate the “half lives” of stars and movie
studios based on their movie portfolios of the past decade.

27. De Vany (1997) deals with this issue in more detail. We analyze how production decisions are
related to past events in our current research.

28. Earthquakes also follow a power law. Trying to predict the next blockbuster is like trying to
predict the next big earthquake.

29. Given the risk at the box office, it is not surprising that many movies are made on the basis of
pre-committed foreign distribution funds and tie-ins to games and fast food promotions.

30. In our current research we examine whether private information sharing can overcome a non-
informative information cascade created by big budgets, star presence, and nationwide releases
(De Vany and Walls, 1999).
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